You can’t work long in eye care without becoming aware of excimer laser procedures. Excimer lasers are the tool that enabled the explosion in laser vision correction procedures in the 1990s. According to the Refractive Surgery Council, laser vision correction surgeries increased 48% year-over-year from Q3 2020 to Q3 2021 — the vast majority of those procedures performed with an excimer laser. So, given its primacy in vision correction, ophthalmic professionals need to understand the technology and how to present it to patients.
A little history
Excimer laser technology was developed by IBM in 1976 and was used extensively in the creation of computer microchips. In ophthalmology, the excimer was first used clinically in 1985. In 1988, Dr. Marguerite McDonald verified the theoretical basis of photorefractive keratectomy (PRK) in a series of animal experiments that led to the first successful application in a normal sighted eye in May 1988.
As Brian S. Boxer Wachler, MD, explains on All About Vision (bit.ly/3rRGRVg ), the excimer laser is a cold laser, which differentiates itself from other lasers we use in ophthalmology (such as the Argon laser, the Yttrium-Aluminum Garnet — best known as the YAG laser — and the femtosecond). It emits a cool beam of ultraviolet light of a specific wavelength to precisely remove corneal tissue. When the surface of the cornea is reshaped in the appropriate manner, it allows light rays to focus properly onto the retina for clear vision.
The FDA approved the excimer laser for use in PRK in 1995; today, it is used to correct myopia, hyperopia and astigmatism by reshaping the cornea after removing the very top layer of corneal cells (the epithelium) with a surgical instrument or an alcohol solution.
In 1998, the FDA approved laser-assisted in-situ keratomileusis (LASIK), a procedure that calls for creating a flap in the corneal tissue of approximately 120 to 130 microns, reshaping the cornea with the laser, and then repositioning the flap on the cornea. LASIK quickly became the more requested vision correction procedure as it has a much faster recovery time than PRK and delivers immediate results to patients.
Now I will review the key pieces a practice needs in place to successfully incorporate excimer laser procedures.
Appoint a refractive coordinator
First, I recommend that your practice assign one technician as the refractive coordinator. This person works directly with the refractive surgeon in the clinical setting, providing support. This support includes screening patients, performing preliminary workups, scheduling procedures at the laser center, and scheduling postoperative checkups. The refractive coordinator is the go-to person for refractive patients and for office staff.
Patient selection
Patients seeking LASIK today undergo a thorough ophthalmic examination to determine if they are good candidates. Prior to coming to our facility for their first appointment with the ophthalmologist, we schedule them at our laser center for preliminary measurements and screening. We perform wavefront and anterior segment tomography (Oculus, Pentacam) measurements to determine refraction and corneal thickness.
The range of correction for LASIK and PRK is approximately +5.00 D to −10.00 D sphere; astigmatism between −0.25 D and −6.00 D may also be corrected. Anterior segment tomography, among other things, measures corneal thickness, which is critical to the discussion of whether to perform LASIK or PRK. The cornea must be more than 500 microns thick to allow for the creation of the flap and the removal of tissue to correct the refractive error. Leaving the cornea too thin would put the patient at risk for serious complications. Corneas that measure less than 500 microns are better suited to PRK, as no flap is created in that procedure. Studies report the visual results of PRK vs. LASIK at 6 months postop are very similar. The major difference is the initial healing during the first few days.
Contraindications
Some patients are simply not good candidates for laser vision correction. Factors that would put a patient in this category are unstable refractive error, corneal warpage, keratoconus, corneal disease, cataract, retinal/macular disease, and systemic conditions such autoimmune diseases.
Additionally, a thin cornea can cause a LASIK-seeking patient to instead qualify for PRK. With careful counseling before surgery, a patient can go forward with PRK and have as good an outcome as one who had LASIK. Make sure the patient understands that PRK is uncomfortable in the immediate postoperative period and vision takes days to clear.
Pre-surgery prep
We instruct patients to discontinue soft contact lens wear for a minimum of 3 days prior to evaluation. Prior to the laser treatment, we recommend they discontinue contact lens wear for at least 2 weeks. However, the time needed to discontinue contact lens wear can be longer than that — it depends solely on the how stable the cornea appears.
For example, a patient who has been wearing rigid gas permeable (RGP) contact lens will require much longer discontinuation of wear, because this type of lens tends to mold or reshape the cornea. Unmolding is imperative to a good outcome of laser surgery because the patient’s cornea changes shape as it unmolds. If the cornea is still changing shape and PRK or LASIK is performed before stabilization, then the outcome cannot be predicted. The refractive coordinator may have the RGP wearer come in for several refractions prior to the preliminary examination and give the patient a temporary prescription for glasses. The refractive coordinator will explain to the patient that they may have to come back to the office every time their vision deteriorates enough to require a change in glasses. This can take up to 1 month for every decade of RGP wear before the practice can obtain an accurate refraction.
At each visit to the office, the patient will need a corneal topography (CT) measurement. Once two consecutive CT measurements show no further changes and the refraction is stable, the patient is ready for a complete ophthalmic examination that will include a cycloplegic refraction (See "Refractive Evaluation Steps").
Refractive Evaluation Steps
At the time the appointment is made, inform the patient that the refractive evaluation steps requires 1.5 to 2 hours.
The technician performs the following:
- Cycloplegic refraction (CR)
- Show patient LASIK/PRK video
- Pachymetry
- Visual acuity check, CC and SC
- Manifest refraction performed before cycloplegic refraction
- Topography
- Dominant eye determination
- Pupil measurement
- Schirmer’s test
► MD sees patient last to evaluate health of eyes, discuss options, statistics, and decide with the patient the best treatment option to achieve the desired visual outcome
► Procedure choice made by MD and patient
► Provide the patient with a copy of the informed consent form to read before the procedure is performed
► Schedule the procedure at the laser center as well as postoperative appointments
Your final step
A last, critical requirement in educating patients about refractive laser surgery: The patient must have realistic expectations of the procedure. This can be the most important and difficult part of the evaluation. Here, being honest and not over promising visual acuity results can help lead to greater patient satisfaction with the procedure. OP